

Pluralism of Mathematical Understanding – A Process-Based Approach

Zhouwanyue (Nata) Yang

MCMP, LMU Munich; DMRCP; IVC Fellow, Uni Wien

10.06.2024

Table of Contents

1 Introduction

2 Strategy

Why thematize understanding? Payoffs Why mathematical practices?

Some Statements about Mathematics

- 1 + 1 = 2
- $2 \times 3 = 1 \times 6$
- $\pi > 3$
- Every natural number has a successor.
- The consistency of arithmetic needs a proof to be true.
- Any total function defined in $[r_0, r_1](r_0 < r_1)$ is uniformly continuous.

True, or not?

- 1 + 1 = 2
- $2 \times 3 = 1 \times 6$
- $\pi > 3$
- Every natural number has a successor.

- The consistency of arithmetic needs a proof to be true. (?)
- Any total function defined in [r₀, r₁](r₀ < r₁) is uniformly continuous. (?!)

Disagreement among Mathematicians

- The consistency of arithmetic needs a proof to be true. (?)
 - Classical mathematicians Yes! (Gentzen's proof in 1936)
 - Pre-intuitionistic mathematicians (Poincaré, Borel, Lebesgue) No!
- Any total function defined in [r₀, r₁](r₀ < r₁) is uniformly continuous. (?!)
 - Classical mathematicians No! Not even continuous.
 - Intuitionistic mathematicians (Brouwer) Yes! (the viscous reals)

What does the disagreement mean?

What is indicated by the disagreement in truth-evaluations of cognitively significant mathematical propositions?

- A broken concept of mathematics?
- Different understanding of mathematics?
- \Rightarrow Initial motivation of my dissertation:

Explain the disagreement without evaluating the rationality of different mathematical schools

 \heartsuit A possible answer:

A process-based account that entails a pluralistic stance on mathematical understanding

Table of Contents

Introduction

2 Strategy

Why thematize understanding? Payoffs Why mathematical practices?

Why thematize understanding?

Why thematize understanding?

What is indicated by different truth-evaluations of cognitively significant mathematical propositions?

- A broken concept of Mathematics? NO... It is almost an inference from cognitive level to factual level.
- Different understanding of mathematics? YES!!
 - 1 Understanding is considered an epistemic goal;
 - 2 the success of understanding can be evaluated <u>relative</u> to agents

On Understanding and Understandability (I)

 \Rightarrow <u>'S understands O'</u> and 'O is understandable to S'

The truth value of 'S understands O' varies across agents.¹

- Irrelevant: my successful understanding of $2 \times 3 = 1 \times 6$ & whether my neighbor understands it
- Not necessarily relevant: my current successful understanding of $2 \times 3 = 1 \times 6$ & my inability of understanding it when I was two-year old

 $^{^{1}}S$ refers to an understanding agent, *O* to an object in the domain of mathematics e.g. a proposition, a concept, a proof.

On Understanding and Understandability (II)

\Rightarrow 'S understands O' and <u>'O is understandable to S'</u>

It's fine to assume optimistically: The truth value of 'O is understandable to S' is absolute, for all agents with human-alike cognitive abilities.

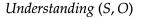
- 2 × 3 = 1 × 6 is **understandable** to me and my neighbor, even to an alien with human-alike cognitive abilities.
- $2 \times 3 = 1 \times 6$ is **understandable** to me (now and then).

Payoffs

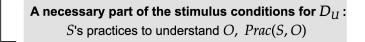
Payoffs of Involving Understandability (I)

- 1 A legitimately basis of talking about:
 - O an understood object in the domain of mathematics
 - S an understanding agent S with human-alike cognitive abilities
- A way to transform from particular mathematical understanding to its general form
 - by treating 'the pair (*S*, *O*)' as the common structure of the subject of the present project, meaning **any** *S* and **any** *O* fall under the understandability relation
 - by studying the **stimulus conditions** that allow some *S* and some *O* falling under the understanding relation

Payoffs



Payoffs of Involving Understandability (II)


3 An inherited dependence relation for free, by treating

- the relational property, understandability, as a **disposition** of the pair (*S*, *O*)
- the relational property, understanding, as a **manifestation** of this disposition
- mathematical practices exercised by *S* as a **necessary part of the stimulus conditions** for the manifestation of this disposition

 D_{U}

Understandability (*S*, *O*)

Figure: The Inherited Dependence

Why analyze mathematical practices?

<u>Fact</u>: Mathematical understanding arises from mathematical practices and the practices of mathematical agents differ from case to case.

- The analyses of real-world mathematical practices <u>allows</u> us to study the disagreement of the truth-evaluation of mathematical proposition via a more **fine-grained** study of mathematical understanding.
- Since it **localizes the contextual influences** on mathematical understanding at the practical, non-cognitive level, analyzing mathematical practices prevents us from making cognitive evaluation about the rationality of mathematical agents.

Why mathematical practices?

What is analyzed?

Actions, objects and the use of cognitive abilities (read functionally):

- The **actions** performed by *S* to understand *O* their constitutive role in *S*'s understanding of *O*.
- The **objects** that *S* accepts in order to act on them to understand *O* the informational items they carry that can be mutually related to provide content for *S*'s understanding of *O*.
- *S*'s **use of cognitive abilities** for understanding *O* the constitution of *S*'s understanding of *O*.

Understanding(S, O) – constitution of understanding in terms of ability use Constitution(Understanding(S, O))

 D_{U} A necessary part of the stimulus conditions for D_{U} : S's practices to understand O, Prac(S, O)Prac(S, O): $\begin{cases} actions (constitutive roles) & C(Prac(S, O)) \\ objects (informational roles) & I(Prac(S, O)) \end{cases}$

Understandability (S, O)

Figure: The Structure of Strategy

Strategy

Why mathematical practices?

Questions and Comments, Please! THANK YOU!!