A ten-minute presentation of my research interests

Matthew Inglis

Loughborough

 UniversityCentre for
Mathematical Cognition

My Interests

- Who am I?

My Interests

- Who am I?
- Interested in mathematical cognition

My Interests

- Who am I?
- Interested in mathematical cognition
- I conceive this to mean the ways in which mathematical information is processed

My Interests

- Who am I?
- Interested in mathematical cognition
- I conceive this to mean the ways in which mathematical information is processed
- Often, but not always, this is in an educational context

My Interests

- Who am I?
- Interested in mathematical cognition
- I conceive this to mean the ways in which mathematical information is processed
- Often, but not always, this is in an educational context
- An interdisciplinary endeavour involving psychologists, educators, neuroscientists (and perhaps some philosophers and anthropologists).

Mathematical Cognition

Mathematical Cognition

I direct Loughborough's Centre for Mathematical Cognition: www.cmc.ac.uk

Mathematical Cognition

I direct Loughborough's Centre for Mathematical Cognition: www.cmc.ac.uk
"Distinctively, we aim to bridge the gap between basic research on mathematical cognition and more applied work that involves designing and evaluating research-informed pedagogical materials. Some examples of our recent work:

Mathematical Cognition

I direct Loughborough's Centre for Mathematical Cognition: www.cmc.ac.uk
"Distinctively, we aim to bridge the gap between basic research on mathematical cognition and more applied work that involves designing and evaluating research-informed pedagogical materials. Some examples of our recent work:

- Theresa Wege and colleagues investigated how young children develop the ability to count abstract units;

Mathematical Cognition

I direct Loughborough's Centre for Mathematical Cognition: www.cmc.ac.uk
"Distinctively, we aim to bridge the gap between basic research on mathematical cognition and more applied work that involves designing and evaluating research-informed pedagogical materials. Some examples of our recent work:

- Theresa Wege and colleagues investigated how young children develop the ability to count abstract units;
- Francesco Sella and colleagues studied the influence that choosing to study mathematics at post-compulsory levels has on brain development;

Mathematical Cognition

I direct Loughborough's Centre for Mathematical Cognition: www.cmc.ac.uk
"Distinctively, we aim to bridge the gap between basic research on mathematical cognition and more applied work that involves designing and evaluating research-informed pedagogical materials. Some examples of our recent work:

- Theresa Wege and colleagues investigated how young children develop the ability to count abstract units;
- Francesco Sella and colleagues studied the influence that choosing to study mathematics at post-compulsory levels has on brain development;
- Colin Foster and colleagues are harnessing basic research insights to develop a complete, fully resourced, and free-to-access mathematics curriculum;

Mathematical Cognition

I direct Loughborough's Centre for Mathematical Cognition: www.cmc.ac.uk
"Distinctively, we aim to bridge the gap between basic research on mathematical cognition and more applied work that involves designing and evaluating research-informed pedagogical materials. Some examples of our recent work:

- Theresa Wege and colleagues investigated how young children develop the ability to count abstract units;
- Francesco Sella and colleagues studied the influence that choosing to study mathematics at post-compulsory levels has on brain development;
- Colin Foster and colleagues are harnessing basic research insights to develop a complete, fully resourced, and free-to-access mathematics curriculum;
- Hugues Lortie-Forgues and Matthew Inglis studied how educational interventions are currently evaluated, arguing that existing methods typically provide uninformative results and suggesting how the situation could be improved."

Mathematical Cognition

An Introduction to Mathematical Cognition

- Nonsymbolic number
- Symbolic number
- Development of arithmetic skills
- Understanding of arithmetic concepts (e.g. commutativity, inversion, multiplicative reasoning), conceptual and procedural knowledge
- Individual differences (e.g., dyscalculia, mathematics anxiety)
- Number systems
- Algebra and equivalence
- Mathematical argumentation and proof
- Logic, conditional reasoning and mathematics

Theresa's Work

Theresa Wege's PhD: How we think about numbers: Early counting and mathematical abstraction

Worked with typically developing four and five year old children.

Theresa's Work

Journal of Experimental Child Psychology 225 (2023) 105533

Contents lists available at ScienceDirect
Journal of Experimental Child
Psychology
journal homepage: www.elsevier.com/locate/jecp

Counting many as one: Young children can understand sets as units except when counting

Theresa Elise Wege ${ }^{\mathrm{a}, *}$, Bert De Smedt ${ }^{\mathrm{b}}$, Camilla Gilmore ${ }^{\mathrm{a}}$, Matthew Inglis ${ }^{\text {a }}$
${ }^{\text {a }}$ Centre for Mathematical Cognition, Loughborough University, Loughborough LE11 3TU, UK
${ }^{\mathrm{b}}$ Parenting and Special Education Unit, Katholieke Universiteit (KU) Leuven, B-3000 Leuven, Belgium

A R T I C L E I N F O

Article history:
Recoived 15 Novemher 7071

ABSTRACT
Young children frequently make a peculiar counting mistake.

$$
\frac{5}{x \rightarrow 2}
$$

E : What kinds of animals are there?

E : What kinds of animals are there?
C: Sheep, pig, cows, horses

E : What kinds of animals are there?
C: Sheep, pig, cows, horses

E : How many kinds of animals are there?

E : What kinds of animals are there?
C: Sheep, pig, cows, horses

E : How many kinds of animals are there?
C: Nine

E : What kinds of animals are there?
C: Sheep, pig, cows, horses

E: How many kinds of animals are there?
C: Nine

E: Please sort the animals so that the kinds are together

E : What kinds of animals are there?
C: Sheep, pig, cows, horses

E: How many kinds of animals are there?
C: Nine

E: Please sort the animals so that the kinds are together
C: [Sorts]

E : What kinds of animals are there?
C: Sheep, pig, cows, horses

E : How many kinds of animals are there?
C: Nine

E: Please sort the animals so that the kinds are together C: [Sorts]

E : What kinds of animals are there?
C: Sheep, pig, cows, horses

E : How many kinds of animals are there?
C: Nine

E: Please sort the animals so that the kinds are together
C: [Sorts]
E : We now have groups of the kinds of animals. How many kinds of animals are there?

E : What kinds of animals are there?
C: Sheep, pig, cows, horses

E : How many kinds of animals are there?
C: Nine

E: Please sort the animals so that the kinds are together
C: [Sorts]
E: We now have groups of the kinds of animals. How many kinds of animals are there?
C: Nine

E : What kinds of animals are there?
C: Sheep, pig, cows, horses

E : How many kinds of animals are there?
C: Nine

E: Please sort the animals so that the kinds are together
C: [Sorts]
E: We now have groups of the kinds of animals. How many kinds of animals are there?
C: Nine

E: Please give a block to each kind of animal

E : What kinds of animals are there?
C: Sheep, pig, cows, horses

E : How many kinds of animals are there?
C: Nine

E: Please sort the animals so that the kinds are together
C: [Sorts]
E: We now have groups of the kinds of animals. How many kinds of animals are there?
C: Nine

E: Please give a block to each kind of animal
C: Gives blocks

E : What kinds of animals are there?
C: Sheep, pig, cows, horses

E : How many kinds of animals are there?
C: Nine

E: Please sort the animals so that the kinds are together
C: [Sorts]
E : We now have groups of the kinds of animals. How many kinds of animals are there?
C: Nine

E: Please give a block to each kind of animal
C: Gives blocks

E : What kinds of animals are there?
C: Sheep, pig, cows, horses

E: How many kinds of animals are there?
C: Nine

E: Please sort the animals so that the kinds are together
C: [Sorts]
E : We now have groups of the kinds of animals. How many kinds of animals are there?
C: Nine

E: Please give a block to each kind of animal
C: Gives blocks

E: How many blocks are there?

E : What kinds of animals are there?
C: Sheep, pig, cows, horses

E: How many kinds of animals are there?
C: Nine

E: Please sort the animals so that the kinds are together
C: [Sorts]
E : We now have groups of the kinds of animals. How many kinds of animals are there?
C: Nine

E: Please give a block to each kind of animal
C: Gives blocks

E: How many blocks are there?
C: Four

E : What kinds of animals are there?
C: Sheep, pig, cows, horses

E: How many kinds of animals are there?
C: Nine

E: Please sort the animals so that the kinds are together
C: [Sorts]
E : We now have groups of the kinds of animals. How many kinds of animals are there?
C: Nine

E: Please give a block to each kind of animal
C: Gives blocks

E: How many blocks are there?
C: Four
E: Remember, each kind of animal has one block, how many kinds of animals are there?

E: Please sort the animals so that the kinds are together
C: [Sorts]
E : We now have groups of the kinds of animals. How many kinds of animals are there?
C: Nine

E: Please give a block to each kind of animal
C: Gives blocks

E: How many blocks are there?
C: Four
E: Remember, each kind of animal has one block, how many kinds of animals are there?
C: Nine

Interesting group: about a third of children

Conclusions

- In contrast to previous assumptions, unitizing is not sufficient for counting (at least in the context of abstract units like "kinds of animals" or "colour").

Conclusions

- In contrast to previous assumptions, unitizing is not sufficient for counting (at least in the context of abstract units like "kinds of animals" or "colour").
- Children can name and sort abstract units, and create one-to-one correspondences with them, without being able to count abstract units.

Conclusions

- In contrast to previous assumptions, unitizing is not sufficient for counting (at least in the context of abstract units like "kinds of animals" or "colour").
- Children can name and sort abstract units, and create one-to-one correspondences with them, without being able to count abstract units.
- Main theoretical conclusion: Gelman \& Gallistel's (1978) abstraction principle (anything can be counted) is a non-trivial developmental achievement.

Conclusions

- In contrast to previous assumptions, unitizing is not sufficient for counting (at least in the context of abstract units like "kinds of animals" or "colour").
- Children can name and sort abstract units, and create one-to-one correspondences with them, without being able to count abstract units.
- Main theoretical conclusion: Gelman \& Gallistel's (1978) abstraction principle (anything can be counted) is a non-trivial developmental achievement.
- Next question: How can we facilitate it's development?

Beauty Is Not Simplicity: An Analysis of Mathematicians' Proof Appraisals ${ }^{\dagger}$

Matthew Inglis* and Andrew Aberdein**
*Mathematics Education Centre, Loughborough University, U.K.
E-mail: m.j.inglis@lboro.ac.uk
**School of Arts and Communication, Florida Institute of Technology, U.S.A.
E-mail: aberdein@ft.edu

ABSTRACT

What do mathematicians mean when they use terms such as 'deep', 'elegant', and 'beautiful'? By applying empirical methods developed by social psychologists, we demon strate that mathematicians' appraisals of proofs vary on four dimensions: aesthetics, intricacy, utility, and precision. We pay particular attention to mathematical beauty and show that, contrary to the classical view, beauty and simplicity are almost entirely unrelated in mathematics.

1. INTRODUCTION

Mathematical conversations are full of value judgements. Mathematicians talk of 'beautiful', 'deep', 'insightful', and 'interesting' proofs, and award each other prizes on the basis of these assessments. Validity or applicability are almost never the decisive criteria for such awards. Instead the citations for mathematical prizes are full of aesthetic judgements: nine of the eleven Abel Prize citations since its foundation have characterised the prizewinner or their work as 'deep', and the work of the remaining two was lauded for its beauty and ingenuity [Holden and Piene, 2009; 2013]. Furthermore, many of the most eminent researchers have suggested that it is these value judgements which drive their research agendas. Hermann Weyl even claimed to prioritise beauty over
${ }^{\dagger}$ We are extremely grateful to Lara Alcock, Donald Gillies, and Dirk Schlimm for providing insightful comments on earlier versions of this work. Early drafts of this paper were presented at the Loughborough Proof Reading Workshop (2013), the Mathematical Cultures Research Network (London, 2013), the Second International Meeting of the Association for the Philosophy of Mathematical Practice (Urbana-Champaign, 2013), and the Rutgers Proof Comprehension Workshop (2014), and we thank the audiences for their valuable remarks.

This work was supported by a Royal Society Worshipful Company of Actuaries Research Fellowship to MI. AA is grateful to Florida Institute of Technology for granting sabbatical leave.

Thanks!

Web: http://mcg.lboro.ac.uk/mji/
Email: m.j.inglis@lboro.ac.uk
Twitter: @mjinglis

