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• An interdisciplinary endeavour involving 
psychologists, educators, neuroscientists (and 
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study mathematics at post-compulsory levels has on brain development;

• Colin Foster and colleagues are harnessing basic research insights to 
develop a complete, fully resourced, and free-to-access mathematics 
curriculum;
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• Nonsymbolic number

• Symbolic number

• Development of arithmetic skills

• Understanding of arithmetic concepts 
(e.g. commutativity, inversion, 
multiplicative reasoning), conceptual 
and procedural knowledge

• Individual differences (e.g., 
dyscalculia, mathematics anxiety)

• Number systems

• Algebra and equivalence

• Mathematical argumentation and proof

• Logic, conditional reasoning and 
mathematics
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a b s t r a c t

Young children frequently make a peculiar counting mistake.
When asked to count units that are sets of multiple items, such
as the number of families at a party, they often count discrete
items (i.e., individual people) rather than the number of sets (i.e.,
families). One explanation concerns children’s incomplete under-
standing of what constitutes a unit, resulting in a preference for
discrete items. Here we demonstrate that children’s incomplete
understanding of counting also plays a role. In an experiment with
4- and 5-year-old children (N = 43), we found that even if children
are able to name sets, group items into sets, and create one-to-one
correspondences with sets, many children are nevertheless unable
to count sets as units. We conclude that a nascent understanding of
the abstraction principle of counting is also a cause of some chil-
dren’s counting errors.

! 2022 The Author(s). Published by Elsevier Inc. This is an open
access article under the CC BY license (http://creativecommons.org/

licenses/by/4.0/).

Introduction

Young children in Western cultures typically seem to understand how to count by the age of 3 or
4 years (Litkowski et al., 2020). For example, when asked to count their toys, they may touch each toy
as they say the numbers in turn. But does this performance indicate that children understand the prin-
ciples that define meaningful counting? Research over the past 30 years has shown that children may
perform a counting procedure before they can fully grasp counting as a principled act of quantifying
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Table 1. List of the 7 trials that children completed once for kinds of animals as the abstract unit 
and once for colours as the abstract unit, together with the experimenter’s question and target 
concept for each trial.  

 

 

 

Figure 1. Changing arrangement of the animal toys across the trials using groups of animal toys 
based on kinds as abstract units. Note that the fixed arrangement at the start of the task was the 
same for both the Kinds and Colours tasks. 

 

 

Trial Activity Experimenter’s question Target concept 

1 Name abstract 
units 

What different colours [kinds of 
animals] do you see here? 

Unitizing 

2 Count fixed 

arrangement 

How many different colours [kinds 
of animals] are there? 

Counting abstract units 

3 Sort abstract 
units 

Please sort the animals, so that each 
different colour [kind of animal] is 
together in a group. 

Unitizing 

4 Count sorted 
units 

 

We now have groups of the 
different colours [kinds of animals]. 
How many different colours [kinds 
of animals] are there? 

Counting abstract units 

5 Give one block 
to each unit 

Please give a block to each colour 
[kind of animal]. 

One-to-one 
correspondence with 
abstract units 

6 Count blocks 

 

How many blocks are there? Counting discrete items 

7 Count sorted 
units with blocks 

Remember each colour [kind of 
animal] has one block. How many 
different colours [kinds of animals] 
are there? 

Counting abstract units 
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behavior from initially counting discrete items in early trials to correctly counting sets as units in later
trials. For most children, the preference to count discrete physical items instead of sets as units
remained even after the provision of multiple sources of unitizing support. More specifically, many
children could allocate one block for each set of animal kinds/colors and could count those blocks cor-
rectly, but when asked to count the sets with the blocks still in place and having been reminded that
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ABSTRACT
What do mathematicians mean when they use terms such as ‘deep’, ‘elegant’, and

‘beautiful’? By applying empiricalmethods developed by social psychologists, we demon-
strate that mathematicians’ appraisals of proofs vary on four dimensions: aesthetics,
intricacy, utility, and precision. We pay particular attention to mathematical beauty
and show that, contrary to the classical view, beauty and simplicity are almost entirely
unrelated in mathematics.

1. INTRODUCTION
Mathematical conversations are full of value judgements.Mathematicians talk of ‘beau-
tiful’, ‘deep’, ‘insightful’, and ‘interesting’ proofs, and award each other prizes on the
basis of these assessments. Validity or applicability are almost never the decisive criteria
for such awards. Instead the citations formathematical prizes are full of aesthetic judge-
ments: nine of the eleven Abel Prize citations since its foundation have characterised
the prizewinner or their work as ‘deep’, and the work of the remaining two was lauded
for its beauty and ingenuity [Holden and Piene, 2009; 2013]. Furthermore, many of
the most eminent researchers have suggested that it is these value judgements which
drive their research agendas. Hermann Weyl even claimed to prioritise beauty over
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People in pain make poorer decisions
Nina Attridgea,*, Jayne Pickeringa, Matthew Inglisa, Edmund Keoghb, Christopher Ecclestonb,c

Abstract
Chronic pain affects 1 in 5 people and has been shown to disrupt attention. Here, we investigated whether pain disrupts everyday
decision making. In study 1, 1322 participants completed 2 tasks online: a shopping-decisions task and a measure of decision
outcomes over the previous 10 years. Participants who were in pain during the study made more errors on the shopping task than
those who were pain-free. Participants with a recurrent pain condition reported more negative outcomes from their past decisions
than those without recurrent pain. In study 2, 44 healthy participants completed the shopping-decisions task with and without
experimentally induced pain. Participants made more errors while in pain than while pain-free. We suggest that the disruptive effect
of pain on attending translates into poorer decisions in more complex and ecologically valid contexts, that the effect is causal, and
that the consequences are not only attentional but also financial.

Keywords: Pain, Cognitive disruption, Decision making, Finances, Numeracy

1. Introduction

The disruptive effect of pain on attending has been demonstrated
with experimentally induced pain,30,40 chronic pain,9,15 and
transient pain such as headache.4,24,31 This field has pre-
dominantly focused on simple cognitive processes (although
sometimes using complex tasks combining multiple executive
functions25). Few studies have examined the effects of pain on
higher-level cognition. One which did found that clinical pain was
associated with less abstract thinking,20 whereas another found
no evidence that experimentally induced pain affected abstract
thinking.2 Here, we focus on the potential impact of pain on
higher-level real-world cognitive tasks requiring attention, namely
numerical reasoning and decision making, which have serious
consequences if one gets them wrong.

Reasoning and decision making are required in many areas of
life and are influenced by various cognitive and emotional factors.
Here, we focus on numeracy as a domain that is important in
many areas of life, including budgeting, choosing a mortgage,
and choosing insurance plans. Despite its importance, numeracy
in adults is poor. In the quantitative domain of the USA’s 2003
National Assessment of Adult Literacy, 55% of adults performed
at a basic or below basic level (at best being able to locate easily
identifiable quantitative information and solve one-step arithmetic
problems when the operation was specified or easily inferred).26

These findings were echoed in a 2016 UK Money Advice Service
study29 into the public’s ability to choose the best supermarket

deals for 4 products. Although 74%of participants chose the best
deal for at least one product, only 2% chose optimally for all 4.

Attention is important for learning and performing numerical
operations in both children and adults.13,36 Attention is also
important in decision making, where we need to consider various
options, estimate their likely outcomes, and then hold these in
mind while choosing among them. Given that pain impairs
attention, it may also influence numerical decision making.
Indeed, there is some initial evidence that this is the case. Placing
a hand into ice-cold water changed participants’ risk-taking on
a financial decision-making task.35

We investigated the effect of pain on everyday decision
making. In study 1, a large general population sample recruited
online reported whether they were currently in pain and whether
they had any recurrent pain conditions. They completed 2
tasks: the shopping-decision task used by the Money Advice
Service29 and the Decision Outcomes Inventory (DOI10), which
measures real-world outcomes of everyday decisions made
over the previous 10 years. We hypothesized that participants
who were in pain would find the best shopping deal on fewer
items than participants who were pain-free. If the effect of pain
on attention does translate into poorer decision making, the
outcomes of these poor decisions may accumulate in people
with chronic pain. We therefore hypothesized that participants
with pain that had lasted for 3 months or longer would report
more negative decision outcomes on the DOI than other
participants. In study 2, we took an experimental approach to
determine a causal relationship: participants completed an
extended shopping-decisions task with their hand in warm or
painfully cold water.

2. Study 1 method

2.1. Design and procedure

Participants (N 5 1322) took part online and were recruited via
Amazon’s Mechanical Turk (N5 658) and Prolific.ac (N5 664).
Research has shown data collected online for psychology
studies are reliable11,33 and that samples tend to be more
diverse than traditional university-based samples.27 The large
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Abstract
Mathematical explanations are poorly understood. Although mathematicians seem to
regularly suggest that some proofs are explanatory whereas others are not, none of
the philosophical accounts of what such claims mean has become widely accepted. In
this paper we explore Wilkenfeld’s (Synthese 191:3367–3391, 2014) suggestion that
explanations are those sorts of things that (in the right circumstances, and in the right
manner) generate understanding. By considering a basic model of human cognitive
architecture, we suggest that existing accounts of mathematical explanation are all
derivable consequences of Wilkenfeld’s ‘functional explanation’ proposal. We there-
fore argue that the explanatory criteria offered by earlier accounts can all be thought of
as features thatmake it more likely that amathematical proofwill generate understand-
ing. On the functional account, features such as characterising properties, unification,
and salience correlate with explanatoriness, but they do not define explanatoriness.

Keywords Explanation · Mathematics · Mathematical practice · Understanding

What are mathematical explanations? This question has generated substantial interest
among philosophers. A number of competing accounts of mathematical explanation
have been proposed (e.g., Kitcher 1981; Lange 2014; Steiner 1978), but all have well-
established limitations. Our primary goal in this paper is to explore the consequences
for mathematics of Wilkenfeld’s (2014) notion of functional explanation. Roughly
speaking, Wilkenfeld suggested that explanations are simply those things that, in
an appropriate manner and at an appropriate time, generate understanding. We will
argue that various philosophical accounts of mathematical explanation—including
those offered by Steiner (1978), Kitcher (1981), and Lange (2014)—are all deriv-
able consequences of a combination of Wilkenfeld’s functional account and a modern
understanding of human cognitive architecture. Consequently, we argue that Wilken-
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the most eminent researchers have suggested that it is these value judgements which
drive their research agendas. Hermann Weyl even claimed to prioritise beauty over
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Abstract
Chronic pain affects 1 in 5 people and has been shown to disrupt attention. Here, we investigated whether pain disrupts everyday
decision making. In study 1, 1322 participants completed 2 tasks online: a shopping-decisions task and a measure of decision
outcomes over the previous 10 years. Participants who were in pain during the study made more errors on the shopping task than
those who were pain-free. Participants with a recurrent pain condition reported more negative outcomes from their past decisions
than those without recurrent pain. In study 2, 44 healthy participants completed the shopping-decisions task with and without
experimentally induced pain. Participants made more errors while in pain than while pain-free. We suggest that the disruptive effect
of pain on attending translates into poorer decisions in more complex and ecologically valid contexts, that the effect is causal, and
that the consequences are not only attentional but also financial.

Keywords: Pain, Cognitive disruption, Decision making, Finances, Numeracy

1. Introduction

The disruptive effect of pain on attending has been demonstrated
with experimentally induced pain,30,40 chronic pain,9,15 and
transient pain such as headache.4,24,31 This field has pre-
dominantly focused on simple cognitive processes (although
sometimes using complex tasks combining multiple executive
functions25). Few studies have examined the effects of pain on
higher-level cognition. One which did found that clinical pain was
associated with less abstract thinking,20 whereas another found
no evidence that experimentally induced pain affected abstract
thinking.2 Here, we focus on the potential impact of pain on
higher-level real-world cognitive tasks requiring attention, namely
numerical reasoning and decision making, which have serious
consequences if one gets them wrong.

Reasoning and decision making are required in many areas of
life and are influenced by various cognitive and emotional factors.
Here, we focus on numeracy as a domain that is important in
many areas of life, including budgeting, choosing a mortgage,
and choosing insurance plans. Despite its importance, numeracy
in adults is poor. In the quantitative domain of the USA’s 2003
National Assessment of Adult Literacy, 55% of adults performed
at a basic or below basic level (at best being able to locate easily
identifiable quantitative information and solve one-step arithmetic
problems when the operation was specified or easily inferred).26

These findings were echoed in a 2016 UK Money Advice Service
study29 into the public’s ability to choose the best supermarket

deals for 4 products. Although 74%of participants chose the best
deal for at least one product, only 2% chose optimally for all 4.

Attention is important for learning and performing numerical
operations in both children and adults.13,36 Attention is also
important in decision making, where we need to consider various
options, estimate their likely outcomes, and then hold these in
mind while choosing among them. Given that pain impairs
attention, it may also influence numerical decision making.
Indeed, there is some initial evidence that this is the case. Placing
a hand into ice-cold water changed participants’ risk-taking on
a financial decision-making task.35

We investigated the effect of pain on everyday decision
making. In study 1, a large general population sample recruited
online reported whether they were currently in pain and whether
they had any recurrent pain conditions. They completed 2
tasks: the shopping-decision task used by the Money Advice
Service29 and the Decision Outcomes Inventory (DOI10), which
measures real-world outcomes of everyday decisions made
over the previous 10 years. We hypothesized that participants
who were in pain would find the best shopping deal on fewer
items than participants who were pain-free. If the effect of pain
on attention does translate into poorer decision making, the
outcomes of these poor decisions may accumulate in people
with chronic pain. We therefore hypothesized that participants
with pain that had lasted for 3 months or longer would report
more negative decision outcomes on the DOI than other
participants. In study 2, we took an experimental approach to
determine a causal relationship: participants completed an
extended shopping-decisions task with their hand in warm or
painfully cold water.

2. Study 1 method

2.1. Design and procedure

Participants (N 5 1322) took part online and were recruited via
Amazon’s Mechanical Turk (N5 658) and Prolific.ac (N5 664).
Research has shown data collected online for psychology
studies are reliable11,33 and that samples tend to be more
diverse than traditional university-based samples.27 The large
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Abstract
Mathematical explanations are poorly understood. Although mathematicians seem to
regularly suggest that some proofs are explanatory whereas others are not, none of
the philosophical accounts of what such claims mean has become widely accepted. In
this paper we explore Wilkenfeld’s (Synthese 191:3367–3391, 2014) suggestion that
explanations are those sorts of things that (in the right circumstances, and in the right
manner) generate understanding. By considering a basic model of human cognitive
architecture, we suggest that existing accounts of mathematical explanation are all
derivable consequences of Wilkenfeld’s ‘functional explanation’ proposal. We there-
fore argue that the explanatory criteria offered by earlier accounts can all be thought of
as features thatmake it more likely that amathematical proofwill generate understand-
ing. On the functional account, features such as characterising properties, unification,
and salience correlate with explanatoriness, but they do not define explanatoriness.

Keywords Explanation · Mathematics · Mathematical practice · Understanding

What are mathematical explanations? This question has generated substantial interest
among philosophers. A number of competing accounts of mathematical explanation
have been proposed (e.g., Kitcher 1981; Lange 2014; Steiner 1978), but all have well-
established limitations. Our primary goal in this paper is to explore the consequences
for mathematics of Wilkenfeld’s (2014) notion of functional explanation. Roughly
speaking, Wilkenfeld suggested that explanations are simply those things that, in
an appropriate manner and at an appropriate time, generate understanding. We will
argue that various philosophical accounts of mathematical explanation—including
those offered by Steiner (1978), Kitcher (1981), and Lange (2014)—are all deriv-
able consequences of a combination of Wilkenfeld’s functional account and a modern
understanding of human cognitive architecture. Consequently, we argue that Wilken-
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Abstract
Offering explanations is a central part of teaching mathematics, and understanding those 
explanations is a vital activity for learners. Given this, it is natural to ask what makes a 
good mathematical explanation. This question has received surprisingly little attention in 
the mathematics education literature, perhaps because the field has no agreed method by 
which explanation quality can be reliably assessed. In this paper, we explore this issue by 
asking whether mathematicians and undergraduates agree with each other about explana-
tion quality. A corpus of 10 explanations produced by 10 mathematicians was used. Using 
a comparative judgement method, we analysed 320 paired comparisons from 16 mathema-
ticians and 320 from 32 undergraduate students. We found that both mathematicians and 
undergraduates were able to reliably assess the quality of a set of mathematical explana-
tions. Furthermore, the assessments were largely consistent across the two groups. Implica-
tions for theories of mathematical explanation are discussed. We conclude by arguing that 
comparative judgement is a promising technique for exploring explanation quality.
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ABSTRACT
What do mathematicians mean when they use terms such as ‘deep’, ‘elegant’, and

‘beautiful’? By applying empiricalmethods developed by social psychologists, we demon-
strate that mathematicians’ appraisals of proofs vary on four dimensions: aesthetics,
intricacy, utility, and precision. We pay particular attention to mathematical beauty
and show that, contrary to the classical view, beauty and simplicity are almost entirely
unrelated in mathematics.

1. INTRODUCTION
Mathematical conversations are full of value judgements.Mathematicians talk of ‘beau-
tiful’, ‘deep’, ‘insightful’, and ‘interesting’ proofs, and award each other prizes on the
basis of these assessments. Validity or applicability are almost never the decisive criteria
for such awards. Instead the citations formathematical prizes are full of aesthetic judge-
ments: nine of the eleven Abel Prize citations since its foundation have characterised
the prizewinner or their work as ‘deep’, and the work of the remaining two was lauded
for its beauty and ingenuity [Holden and Piene, 2009; 2013]. Furthermore, many of
the most eminent researchers have suggested that it is these value judgements which
drive their research agendas. Hermann Weyl even claimed to prioritise beauty over
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Abstract
Chronic pain affects 1 in 5 people and has been shown to disrupt attention. Here, we investigated whether pain disrupts everyday
decision making. In study 1, 1322 participants completed 2 tasks online: a shopping-decisions task and a measure of decision
outcomes over the previous 10 years. Participants who were in pain during the study made more errors on the shopping task than
those who were pain-free. Participants with a recurrent pain condition reported more negative outcomes from their past decisions
than those without recurrent pain. In study 2, 44 healthy participants completed the shopping-decisions task with and without
experimentally induced pain. Participants made more errors while in pain than while pain-free. We suggest that the disruptive effect
of pain on attending translates into poorer decisions in more complex and ecologically valid contexts, that the effect is causal, and
that the consequences are not only attentional but also financial.
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1. Introduction

The disruptive effect of pain on attending has been demonstrated
with experimentally induced pain,30,40 chronic pain,9,15 and
transient pain such as headache.4,24,31 This field has pre-
dominantly focused on simple cognitive processes (although
sometimes using complex tasks combining multiple executive
functions25). Few studies have examined the effects of pain on
higher-level cognition. One which did found that clinical pain was
associated with less abstract thinking,20 whereas another found
no evidence that experimentally induced pain affected abstract
thinking.2 Here, we focus on the potential impact of pain on
higher-level real-world cognitive tasks requiring attention, namely
numerical reasoning and decision making, which have serious
consequences if one gets them wrong.

Reasoning and decision making are required in many areas of
life and are influenced by various cognitive and emotional factors.
Here, we focus on numeracy as a domain that is important in
many areas of life, including budgeting, choosing a mortgage,
and choosing insurance plans. Despite its importance, numeracy
in adults is poor. In the quantitative domain of the USA’s 2003
National Assessment of Adult Literacy, 55% of adults performed
at a basic or below basic level (at best being able to locate easily
identifiable quantitative information and solve one-step arithmetic
problems when the operation was specified or easily inferred).26

These findings were echoed in a 2016 UK Money Advice Service
study29 into the public’s ability to choose the best supermarket

deals for 4 products. Although 74%of participants chose the best
deal for at least one product, only 2% chose optimally for all 4.

Attention is important for learning and performing numerical
operations in both children and adults.13,36 Attention is also
important in decision making, where we need to consider various
options, estimate their likely outcomes, and then hold these in
mind while choosing among them. Given that pain impairs
attention, it may also influence numerical decision making.
Indeed, there is some initial evidence that this is the case. Placing
a hand into ice-cold water changed participants’ risk-taking on
a financial decision-making task.35

We investigated the effect of pain on everyday decision
making. In study 1, a large general population sample recruited
online reported whether they were currently in pain and whether
they had any recurrent pain conditions. They completed 2
tasks: the shopping-decision task used by the Money Advice
Service29 and the Decision Outcomes Inventory (DOI10), which
measures real-world outcomes of everyday decisions made
over the previous 10 years. We hypothesized that participants
who were in pain would find the best shopping deal on fewer
items than participants who were pain-free. If the effect of pain
on attention does translate into poorer decision making, the
outcomes of these poor decisions may accumulate in people
with chronic pain. We therefore hypothesized that participants
with pain that had lasted for 3 months or longer would report
more negative decision outcomes on the DOI than other
participants. In study 2, we took an experimental approach to
determine a causal relationship: participants completed an
extended shopping-decisions task with their hand in warm or
painfully cold water.

2. Study 1 method

2.1. Design and procedure

Participants (N 5 1322) took part online and were recruited via
Amazon’s Mechanical Turk (N5 658) and Prolific.ac (N5 664).
Research has shown data collected online for psychology
studies are reliable11,33 and that samples tend to be more
diverse than traditional university-based samples.27 The large
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Mathematical explanations are poorly understood. Although mathematicians seem to
regularly suggest that some proofs are explanatory whereas others are not, none of
the philosophical accounts of what such claims mean has become widely accepted. In
this paper we explore Wilkenfeld’s (Synthese 191:3367–3391, 2014) suggestion that
explanations are those sorts of things that (in the right circumstances, and in the right
manner) generate understanding. By considering a basic model of human cognitive
architecture, we suggest that existing accounts of mathematical explanation are all
derivable consequences of Wilkenfeld’s ‘functional explanation’ proposal. We there-
fore argue that the explanatory criteria offered by earlier accounts can all be thought of
as features thatmake it more likely that amathematical proofwill generate understand-
ing. On the functional account, features such as characterising properties, unification,
and salience correlate with explanatoriness, but they do not define explanatoriness.

Keywords Explanation · Mathematics · Mathematical practice · Understanding

What are mathematical explanations? This question has generated substantial interest
among philosophers. A number of competing accounts of mathematical explanation
have been proposed (e.g., Kitcher 1981; Lange 2014; Steiner 1978), but all have well-
established limitations. Our primary goal in this paper is to explore the consequences
for mathematics of Wilkenfeld’s (2014) notion of functional explanation. Roughly
speaking, Wilkenfeld suggested that explanations are simply those things that, in
an appropriate manner and at an appropriate time, generate understanding. We will
argue that various philosophical accounts of mathematical explanation—including
those offered by Steiner (1978), Kitcher (1981), and Lange (2014)—are all deriv-
able consequences of a combination of Wilkenfeld’s functional account and a modern
understanding of human cognitive architecture. Consequently, we argue that Wilken-
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Abstract
Offering explanations is a central part of teaching mathematics, and understanding those 
explanations is a vital activity for learners. Given this, it is natural to ask what makes a 
good mathematical explanation. This question has received surprisingly little attention in 
the mathematics education literature, perhaps because the field has no agreed method by 
which explanation quality can be reliably assessed. In this paper, we explore this issue by 
asking whether mathematicians and undergraduates agree with each other about explana-
tion quality. A corpus of 10 explanations produced by 10 mathematicians was used. Using 
a comparative judgement method, we analysed 320 paired comparisons from 16 mathema-
ticians and 320 from 32 undergraduate students. We found that both mathematicians and 
undergraduates were able to reliably assess the quality of a set of mathematical explana-
tions. Furthermore, the assessments were largely consistent across the two groups. Implica-
tions for theories of mathematical explanation are discussed. We conclude by arguing that 
comparative judgement is a promising technique for exploring explanation quality.
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Abstract

Stereotype threat has been proposed as one cause of gender differences in post-compul-

sory mathematics participation. Danaher and Crandall argued, based on a study conducted

by Stricker and Ward, that enquiring about a student’s gender after they had finished a test,

rather than before, would reduce stereotype threat and therefore increase the attainment of

women students. Making such a change, they argued, could lead to nearly 5000 more

women receiving AP Calculus AB credit per year. We conducted a preregistered conceptual

replication of Stricker and Ward’s study in the context of the UK Mathematics Trust’s Junior

Mathematical Challenge, finding no evidence of this stereotype threat effect. We conclude

that the ‘silver bullet’ intervention of relocating demographic questions on test answer

sheets is unlikely to provide an effective solution to systemic gender inequalities in mathe-

matics education.

Introduction

Mathematics education researchers have long been concerned that mathematics is experienced
differently by men and women [1]. This concern is, in part, fueled by gender differences in
post-compulsory participation rates in mathematical study and STEM careers [2].

One mechanism which some believe contributes to these observed gender differences in
participation is stereotype threat. This account suggests that members of negatively stereotyped
groups underperform when that stereotype is salient, perhaps because stereotype-related
thoughts place an extra burden on stereotyped individuals’ cognitive resources [3]. For exam-
ple, Steele and Aronson [4] found that black participants underperformed on laboratory tests
of verbal ability compared to white participants, but only when reminded of negative stereo-
types concerning race and intelligence. Similarly, Spencer, Steele and Quinn [5] found that
women performed worse on a laboratory mathematics test than men, but only when they were
told that the test usually revealed gender differences in achievement. Subsequently many simi-
lar lab-based studies have been conducted: a meta-analysis of 47 such studies showed that
women, on average, underperform on laboratory mathematics tests by 0.22 standard devia-
tions when under stereotype threat conditions [6].
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ABSTRACT
What do mathematicians mean when they use terms such as ‘deep’, ‘elegant’, and

‘beautiful’? By applying empiricalmethods developed by social psychologists, we demon-
strate that mathematicians’ appraisals of proofs vary on four dimensions: aesthetics,
intricacy, utility, and precision. We pay particular attention to mathematical beauty
and show that, contrary to the classical view, beauty and simplicity are almost entirely
unrelated in mathematics.

1. INTRODUCTION
Mathematical conversations are full of value judgements.Mathematicians talk of ‘beau-
tiful’, ‘deep’, ‘insightful’, and ‘interesting’ proofs, and award each other prizes on the
basis of these assessments. Validity or applicability are almost never the decisive criteria
for such awards. Instead the citations formathematical prizes are full of aesthetic judge-
ments: nine of the eleven Abel Prize citations since its foundation have characterised
the prizewinner or their work as ‘deep’, and the work of the remaining two was lauded
for its beauty and ingenuity [Holden and Piene, 2009; 2013]. Furthermore, many of
the most eminent researchers have suggested that it is these value judgements which
drive their research agendas. Hermann Weyl even claimed to prioritise beauty over
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Chronic pain affects 1 in 5 people and has been shown to disrupt attention. Here, we investigated whether pain disrupts everyday
decision making. In study 1, 1322 participants completed 2 tasks online: a shopping-decisions task and a measure of decision
outcomes over the previous 10 years. Participants who were in pain during the study made more errors on the shopping task than
those who were pain-free. Participants with a recurrent pain condition reported more negative outcomes from their past decisions
than those without recurrent pain. In study 2, 44 healthy participants completed the shopping-decisions task with and without
experimentally induced pain. Participants made more errors while in pain than while pain-free. We suggest that the disruptive effect
of pain on attending translates into poorer decisions in more complex and ecologically valid contexts, that the effect is causal, and
that the consequences are not only attentional but also financial.
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1. Introduction

The disruptive effect of pain on attending has been demonstrated
with experimentally induced pain,30,40 chronic pain,9,15 and
transient pain such as headache.4,24,31 This field has pre-
dominantly focused on simple cognitive processes (although
sometimes using complex tasks combining multiple executive
functions25). Few studies have examined the effects of pain on
higher-level cognition. One which did found that clinical pain was
associated with less abstract thinking,20 whereas another found
no evidence that experimentally induced pain affected abstract
thinking.2 Here, we focus on the potential impact of pain on
higher-level real-world cognitive tasks requiring attention, namely
numerical reasoning and decision making, which have serious
consequences if one gets them wrong.

Reasoning and decision making are required in many areas of
life and are influenced by various cognitive and emotional factors.
Here, we focus on numeracy as a domain that is important in
many areas of life, including budgeting, choosing a mortgage,
and choosing insurance plans. Despite its importance, numeracy
in adults is poor. In the quantitative domain of the USA’s 2003
National Assessment of Adult Literacy, 55% of adults performed
at a basic or below basic level (at best being able to locate easily
identifiable quantitative information and solve one-step arithmetic
problems when the operation was specified or easily inferred).26

These findings were echoed in a 2016 UK Money Advice Service
study29 into the public’s ability to choose the best supermarket

deals for 4 products. Although 74%of participants chose the best
deal for at least one product, only 2% chose optimally for all 4.

Attention is important for learning and performing numerical
operations in both children and adults.13,36 Attention is also
important in decision making, where we need to consider various
options, estimate their likely outcomes, and then hold these in
mind while choosing among them. Given that pain impairs
attention, it may also influence numerical decision making.
Indeed, there is some initial evidence that this is the case. Placing
a hand into ice-cold water changed participants’ risk-taking on
a financial decision-making task.35

We investigated the effect of pain on everyday decision
making. In study 1, a large general population sample recruited
online reported whether they were currently in pain and whether
they had any recurrent pain conditions. They completed 2
tasks: the shopping-decision task used by the Money Advice
Service29 and the Decision Outcomes Inventory (DOI10), which
measures real-world outcomes of everyday decisions made
over the previous 10 years. We hypothesized that participants
who were in pain would find the best shopping deal on fewer
items than participants who were pain-free. If the effect of pain
on attention does translate into poorer decision making, the
outcomes of these poor decisions may accumulate in people
with chronic pain. We therefore hypothesized that participants
with pain that had lasted for 3 months or longer would report
more negative decision outcomes on the DOI than other
participants. In study 2, we took an experimental approach to
determine a causal relationship: participants completed an
extended shopping-decisions task with their hand in warm or
painfully cold water.

2. Study 1 method

2.1. Design and procedure

Participants (N 5 1322) took part online and were recruited via
Amazon’s Mechanical Turk (N5 658) and Prolific.ac (N5 664).
Research has shown data collected online for psychology
studies are reliable11,33 and that samples tend to be more
diverse than traditional university-based samples.27 The large
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Abstract
Mathematical explanations are poorly understood. Although mathematicians seem to
regularly suggest that some proofs are explanatory whereas others are not, none of
the philosophical accounts of what such claims mean has become widely accepted. In
this paper we explore Wilkenfeld’s (Synthese 191:3367–3391, 2014) suggestion that
explanations are those sorts of things that (in the right circumstances, and in the right
manner) generate understanding. By considering a basic model of human cognitive
architecture, we suggest that existing accounts of mathematical explanation are all
derivable consequences of Wilkenfeld’s ‘functional explanation’ proposal. We there-
fore argue that the explanatory criteria offered by earlier accounts can all be thought of
as features thatmake it more likely that amathematical proofwill generate understand-
ing. On the functional account, features such as characterising properties, unification,
and salience correlate with explanatoriness, but they do not define explanatoriness.

Keywords Explanation · Mathematics · Mathematical practice · Understanding

What are mathematical explanations? This question has generated substantial interest
among philosophers. A number of competing accounts of mathematical explanation
have been proposed (e.g., Kitcher 1981; Lange 2014; Steiner 1978), but all have well-
established limitations. Our primary goal in this paper is to explore the consequences
for mathematics of Wilkenfeld’s (2014) notion of functional explanation. Roughly
speaking, Wilkenfeld suggested that explanations are simply those things that, in
an appropriate manner and at an appropriate time, generate understanding. We will
argue that various philosophical accounts of mathematical explanation—including
those offered by Steiner (1978), Kitcher (1981), and Lange (2014)—are all deriv-
able consequences of a combination of Wilkenfeld’s functional account and a modern
understanding of human cognitive architecture. Consequently, we argue that Wilken-
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Abstract
Offering explanations is a central part of teaching mathematics, and understanding those 
explanations is a vital activity for learners. Given this, it is natural to ask what makes a 
good mathematical explanation. This question has received surprisingly little attention in 
the mathematics education literature, perhaps because the field has no agreed method by 
which explanation quality can be reliably assessed. In this paper, we explore this issue by 
asking whether mathematicians and undergraduates agree with each other about explana-
tion quality. A corpus of 10 explanations produced by 10 mathematicians was used. Using 
a comparative judgement method, we analysed 320 paired comparisons from 16 mathema-
ticians and 320 from 32 undergraduate students. We found that both mathematicians and 
undergraduates were able to reliably assess the quality of a set of mathematical explana-
tions. Furthermore, the assessments were largely consistent across the two groups. Implica-
tions for theories of mathematical explanation are discussed. We conclude by arguing that 
comparative judgement is a promising technique for exploring explanation quality.

Keywords Mathematical explanation · Explanation quality · Mathematical practices · 
Undergraduate mathematics · Comparative judgement
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Abstract

Stereotype threat has been proposed as one cause of gender differences in post-compul-

sory mathematics participation. Danaher and Crandall argued, based on a study conducted

by Stricker and Ward, that enquiring about a student’s gender after they had finished a test,

rather than before, would reduce stereotype threat and therefore increase the attainment of

women students. Making such a change, they argued, could lead to nearly 5000 more

women receiving AP Calculus AB credit per year. We conducted a preregistered conceptual

replication of Stricker and Ward’s study in the context of the UK Mathematics Trust’s Junior

Mathematical Challenge, finding no evidence of this stereotype threat effect. We conclude

that the ‘silver bullet’ intervention of relocating demographic questions on test answer

sheets is unlikely to provide an effective solution to systemic gender inequalities in mathe-

matics education.

Introduction

Mathematics education researchers have long been concerned that mathematics is experienced
differently by men and women [1]. This concern is, in part, fueled by gender differences in
post-compulsory participation rates in mathematical study and STEM careers [2].

One mechanism which some believe contributes to these observed gender differences in
participation is stereotype threat. This account suggests that members of negatively stereotyped
groups underperform when that stereotype is salient, perhaps because stereotype-related
thoughts place an extra burden on stereotyped individuals’ cognitive resources [3]. For exam-
ple, Steele and Aronson [4] found that black participants underperformed on laboratory tests
of verbal ability compared to white participants, but only when reminded of negative stereo-
types concerning race and intelligence. Similarly, Spencer, Steele and Quinn [5] found that
women performed worse on a laboratory mathematics test than men, but only when they were
told that the test usually revealed gender differences in achievement. Subsequently many simi-
lar lab-based studies have been conducted: a meta-analysis of 47 such studies showed that
women, on average, underperform on laboratory mathematics tests by 0.22 standard devia-
tions when under stereotype threat conditions [6].

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0267699 May 27, 2022 1 / 12

a1111111111
a1111111111
a1111111111
a1111111111
a1111111111

OPEN ACCESS

Citation: Inglis M, O’Hagan S (2022) Stereotype
threat, gender and mathematics attainment: A
conceptual replication of Stricker & Ward. PLoS
ONE 17(5): e0267699. https://doi.org/10.1371/
journal.pone.0267699

Editor: Jelte M. Wicherts, Tilburg University,
NETHERLANDS

Received: June 7, 2021

Accepted: April 14, 2022

Published: May 27, 2022

Copyright: © 2022 Inglis, O’Hagan. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the original
author and source are credited.

Data Availability Statement: The raw data and
analyses scripts are available at https://doi.org/10.
17605/OSF.IO/UMJ4H.

Funding: The authors received no specific funding
for this work.

Competing interests: I have read the journal’s
policy and the authors of this manuscript have the
following competing interests: At the time the
study was conducted, Steven O’Hagan was
employed as the Deputy Director of the UK
Mathematics Trust. This does not alter our

Educational Researcher, Vol. 48 No. 3, pp. 158 –166
DOI: 10.3102/0013189X19832850

Article reuse guidelines: sagepub.com/journals-permissions
© 2019 AERA. http://er.aera.net158   EDUCATIONAL RESEARCHER

Large-scale randomized controlled trials (RCTs) are now 
regularly used to evaluate educational interventions. For 
example, the U.S.-based National Center for Educational 

Evaluation and Regional Assistance (NCEE) started funding 
large-scale RCTs in 2002, and the UK-based Education 
Endowment Foundation (EEF) has funded more than 160 since 
2012. This trend is not limited to these two countries: In recent 
years, funding organizations in the European Union (e.g., 
European Schoolnet), Japan (e.g., Nippon Foundation), 
Australia (e.g., Social Ventures), Switzerland (e.g., Jacob’s 
Foundation), Brazil (e.g., Lemann Foundation), and Bangladesh 
(e.g., BRAC) have also prioritized RCTs in education.

Evaluating the efficacy of educational programs before imple-
mentation is important to avoid wasting resources. In medicine, 
there are many instances where RCTs have shown that promising 
treatments were ineffective or harmful (Sibbald & Roland, 1998). 
However, conducting large-scale RCTs is expensive. For example, 
the EEF spends around £500,000 per trial (EEF, 2015a). Given 
the growing number of large-scale RCTs in education and their 
expense, it is important to reflect on how informative this new 
research focus has been. To our knowledge, no study has system-
atically evaluated this recent trend. In this article, we use empiri-
cal data from two prominent educational funding bodies to 
evaluate the typical effects produced by large-scale educational 
RCTs. Our aim is to provide an empirical basis for discussions of 
the field’s efforts to build rigorous scientific evidence.

Randomized Control Trials

RCTs are widely regarded as the “gold standard” for measuring 
the efficacy of interventions (Pocock, 1983). In their simplest 
form, participants are randomly assigned to an experimental 
group that receives the intervention or a control group that 
receives an alternative treatment or possibly no treatment. The 
effectiveness of the intervention is then determined by compar-
ing the outcomes between groups. RCTs are highly regarded 
because compared with other types of studies (e.g., case studies), 
they ensure that the groups are probabilistically identical at the 
outset and that any difference in outcome are therefore caused by 
the intervention (assuming that the probability of the difference 
occurring by chance is sufficiently low).

Unfortunately, not all RCTs are of the same quality (e.g., 
Higgins et al., 2011). The conclusions of an RCT can be dis-
torted or of limited use if, for example, the sample is too small or 
not representative, the allocation of the participants is compro-
mised, the outcomes are selectively reported, attrition is ignored, 
or the outcome measure provides an unfair advantage to the 
intervention group (e.g., by including material that is taught to 
the intervention group but not the control group).
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Rigorous Large-Scale Educational RCTs Are Often 
Uninformative: Should We Be Concerned?
Hugues Lortie-Forgues1 and Matthew Inglis2

There are a growing number of large-scale educational randomized controlled trials (RCTs). Considering their expense, it 
is important to reflect on the effectiveness of this approach. We assessed the magnitude and precision of effects found in 
those large-scale RCTs commissioned by the UK-based Education Endowment Foundation and the U.S.-based National 
Center for Educational Evaluation and Regional Assistance, which evaluated interventions aimed at improving academic 
achievement in K–12 (141 RCTs; 1,222,024 students). The mean effect size was 0.06 standard deviations. These sat within 
relatively large confidence intervals (mean width = 0.30 SDs), which meant that the results were often uninformative (the 
median Bayes factor was 0.56). We argue that our field needs, as a priority, to understand why educational RCTs often find 
small and uninformative effects.
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ABSTRACT
What do mathematicians mean when they use terms such as ‘deep’, ‘elegant’, and

‘beautiful’? By applying empiricalmethods developed by social psychologists, we demon-
strate that mathematicians’ appraisals of proofs vary on four dimensions: aesthetics,
intricacy, utility, and precision. We pay particular attention to mathematical beauty
and show that, contrary to the classical view, beauty and simplicity are almost entirely
unrelated in mathematics.

1. INTRODUCTION
Mathematical conversations are full of value judgements.Mathematicians talk of ‘beau-
tiful’, ‘deep’, ‘insightful’, and ‘interesting’ proofs, and award each other prizes on the
basis of these assessments. Validity or applicability are almost never the decisive criteria
for such awards. Instead the citations formathematical prizes are full of aesthetic judge-
ments: nine of the eleven Abel Prize citations since its foundation have characterised
the prizewinner or their work as ‘deep’, and the work of the remaining two was lauded
for its beauty and ingenuity [Holden and Piene, 2009; 2013]. Furthermore, many of
the most eminent researchers have suggested that it is these value judgements which
drive their research agendas. Hermann Weyl even claimed to prioritise beauty over
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People in pain make poorer decisions
Nina Attridgea,*, Jayne Pickeringa, Matthew Inglisa, Edmund Keoghb, Christopher Ecclestonb,c

Abstract
Chronic pain affects 1 in 5 people and has been shown to disrupt attention. Here, we investigated whether pain disrupts everyday
decision making. In study 1, 1322 participants completed 2 tasks online: a shopping-decisions task and a measure of decision
outcomes over the previous 10 years. Participants who were in pain during the study made more errors on the shopping task than
those who were pain-free. Participants with a recurrent pain condition reported more negative outcomes from their past decisions
than those without recurrent pain. In study 2, 44 healthy participants completed the shopping-decisions task with and without
experimentally induced pain. Participants made more errors while in pain than while pain-free. We suggest that the disruptive effect
of pain on attending translates into poorer decisions in more complex and ecologically valid contexts, that the effect is causal, and
that the consequences are not only attentional but also financial.

Keywords: Pain, Cognitive disruption, Decision making, Finances, Numeracy

1. Introduction

The disruptive effect of pain on attending has been demonstrated
with experimentally induced pain,30,40 chronic pain,9,15 and
transient pain such as headache.4,24,31 This field has pre-
dominantly focused on simple cognitive processes (although
sometimes using complex tasks combining multiple executive
functions25). Few studies have examined the effects of pain on
higher-level cognition. One which did found that clinical pain was
associated with less abstract thinking,20 whereas another found
no evidence that experimentally induced pain affected abstract
thinking.2 Here, we focus on the potential impact of pain on
higher-level real-world cognitive tasks requiring attention, namely
numerical reasoning and decision making, which have serious
consequences if one gets them wrong.

Reasoning and decision making are required in many areas of
life and are influenced by various cognitive and emotional factors.
Here, we focus on numeracy as a domain that is important in
many areas of life, including budgeting, choosing a mortgage,
and choosing insurance plans. Despite its importance, numeracy
in adults is poor. In the quantitative domain of the USA’s 2003
National Assessment of Adult Literacy, 55% of adults performed
at a basic or below basic level (at best being able to locate easily
identifiable quantitative information and solve one-step arithmetic
problems when the operation was specified or easily inferred).26

These findings were echoed in a 2016 UK Money Advice Service
study29 into the public’s ability to choose the best supermarket

deals for 4 products. Although 74%of participants chose the best
deal for at least one product, only 2% chose optimally for all 4.

Attention is important for learning and performing numerical
operations in both children and adults.13,36 Attention is also
important in decision making, where we need to consider various
options, estimate their likely outcomes, and then hold these in
mind while choosing among them. Given that pain impairs
attention, it may also influence numerical decision making.
Indeed, there is some initial evidence that this is the case. Placing
a hand into ice-cold water changed participants’ risk-taking on
a financial decision-making task.35

We investigated the effect of pain on everyday decision
making. In study 1, a large general population sample recruited
online reported whether they were currently in pain and whether
they had any recurrent pain conditions. They completed 2
tasks: the shopping-decision task used by the Money Advice
Service29 and the Decision Outcomes Inventory (DOI10), which
measures real-world outcomes of everyday decisions made
over the previous 10 years. We hypothesized that participants
who were in pain would find the best shopping deal on fewer
items than participants who were pain-free. If the effect of pain
on attention does translate into poorer decision making, the
outcomes of these poor decisions may accumulate in people
with chronic pain. We therefore hypothesized that participants
with pain that had lasted for 3 months or longer would report
more negative decision outcomes on the DOI than other
participants. In study 2, we took an experimental approach to
determine a causal relationship: participants completed an
extended shopping-decisions task with their hand in warm or
painfully cold water.

2. Study 1 method

2.1. Design and procedure

Participants (N 5 1322) took part online and were recruited via
Amazon’s Mechanical Turk (N5 658) and Prolific.ac (N5 664).
Research has shown data collected online for psychology
studies are reliable11,33 and that samples tend to be more
diverse than traditional university-based samples.27 The large
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Abstract
Mathematical explanations are poorly understood. Although mathematicians seem to
regularly suggest that some proofs are explanatory whereas others are not, none of
the philosophical accounts of what such claims mean has become widely accepted. In
this paper we explore Wilkenfeld’s (Synthese 191:3367–3391, 2014) suggestion that
explanations are those sorts of things that (in the right circumstances, and in the right
manner) generate understanding. By considering a basic model of human cognitive
architecture, we suggest that existing accounts of mathematical explanation are all
derivable consequences of Wilkenfeld’s ‘functional explanation’ proposal. We there-
fore argue that the explanatory criteria offered by earlier accounts can all be thought of
as features thatmake it more likely that amathematical proofwill generate understand-
ing. On the functional account, features such as characterising properties, unification,
and salience correlate with explanatoriness, but they do not define explanatoriness.

Keywords Explanation · Mathematics · Mathematical practice · Understanding

What are mathematical explanations? This question has generated substantial interest
among philosophers. A number of competing accounts of mathematical explanation
have been proposed (e.g., Kitcher 1981; Lange 2014; Steiner 1978), but all have well-
established limitations. Our primary goal in this paper is to explore the consequences
for mathematics of Wilkenfeld’s (2014) notion of functional explanation. Roughly
speaking, Wilkenfeld suggested that explanations are simply those things that, in
an appropriate manner and at an appropriate time, generate understanding. We will
argue that various philosophical accounts of mathematical explanation—including
those offered by Steiner (1978), Kitcher (1981), and Lange (2014)—are all deriv-
able consequences of a combination of Wilkenfeld’s functional account and a modern
understanding of human cognitive architecture. Consequently, we argue that Wilken-
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Abstract
Offering explanations is a central part of teaching mathematics, and understanding those 
explanations is a vital activity for learners. Given this, it is natural to ask what makes a 
good mathematical explanation. This question has received surprisingly little attention in 
the mathematics education literature, perhaps because the field has no agreed method by 
which explanation quality can be reliably assessed. In this paper, we explore this issue by 
asking whether mathematicians and undergraduates agree with each other about explana-
tion quality. A corpus of 10 explanations produced by 10 mathematicians was used. Using 
a comparative judgement method, we analysed 320 paired comparisons from 16 mathema-
ticians and 320 from 32 undergraduate students. We found that both mathematicians and 
undergraduates were able to reliably assess the quality of a set of mathematical explana-
tions. Furthermore, the assessments were largely consistent across the two groups. Implica-
tions for theories of mathematical explanation are discussed. We conclude by arguing that 
comparative judgement is a promising technique for exploring explanation quality.
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Abstract

Stereotype threat has been proposed as one cause of gender differences in post-compul-

sory mathematics participation. Danaher and Crandall argued, based on a study conducted

by Stricker and Ward, that enquiring about a student’s gender after they had finished a test,

rather than before, would reduce stereotype threat and therefore increase the attainment of

women students. Making such a change, they argued, could lead to nearly 5000 more

women receiving AP Calculus AB credit per year. We conducted a preregistered conceptual

replication of Stricker and Ward’s study in the context of the UK Mathematics Trust’s Junior

Mathematical Challenge, finding no evidence of this stereotype threat effect. We conclude

that the ‘silver bullet’ intervention of relocating demographic questions on test answer

sheets is unlikely to provide an effective solution to systemic gender inequalities in mathe-

matics education.

Introduction

Mathematics education researchers have long been concerned that mathematics is experienced
differently by men and women [1]. This concern is, in part, fueled by gender differences in
post-compulsory participation rates in mathematical study and STEM careers [2].

One mechanism which some believe contributes to these observed gender differences in
participation is stereotype threat. This account suggests that members of negatively stereotyped
groups underperform when that stereotype is salient, perhaps because stereotype-related
thoughts place an extra burden on stereotyped individuals’ cognitive resources [3]. For exam-
ple, Steele and Aronson [4] found that black participants underperformed on laboratory tests
of verbal ability compared to white participants, but only when reminded of negative stereo-
types concerning race and intelligence. Similarly, Spencer, Steele and Quinn [5] found that
women performed worse on a laboratory mathematics test than men, but only when they were
told that the test usually revealed gender differences in achievement. Subsequently many simi-
lar lab-based studies have been conducted: a meta-analysis of 47 such studies showed that
women, on average, underperform on laboratory mathematics tests by 0.22 standard devia-
tions when under stereotype threat conditions [6].
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Large-scale randomized controlled trials (RCTs) are now 
regularly used to evaluate educational interventions. For 
example, the U.S.-based National Center for Educational 

Evaluation and Regional Assistance (NCEE) started funding 
large-scale RCTs in 2002, and the UK-based Education 
Endowment Foundation (EEF) has funded more than 160 since 
2012. This trend is not limited to these two countries: In recent 
years, funding organizations in the European Union (e.g., 
European Schoolnet), Japan (e.g., Nippon Foundation), 
Australia (e.g., Social Ventures), Switzerland (e.g., Jacob’s 
Foundation), Brazil (e.g., Lemann Foundation), and Bangladesh 
(e.g., BRAC) have also prioritized RCTs in education.

Evaluating the efficacy of educational programs before imple-
mentation is important to avoid wasting resources. In medicine, 
there are many instances where RCTs have shown that promising 
treatments were ineffective or harmful (Sibbald & Roland, 1998). 
However, conducting large-scale RCTs is expensive. For example, 
the EEF spends around £500,000 per trial (EEF, 2015a). Given 
the growing number of large-scale RCTs in education and their 
expense, it is important to reflect on how informative this new 
research focus has been. To our knowledge, no study has system-
atically evaluated this recent trend. In this article, we use empiri-
cal data from two prominent educational funding bodies to 
evaluate the typical effects produced by large-scale educational 
RCTs. Our aim is to provide an empirical basis for discussions of 
the field’s efforts to build rigorous scientific evidence.

Randomized Control Trials

RCTs are widely regarded as the “gold standard” for measuring 
the efficacy of interventions (Pocock, 1983). In their simplest 
form, participants are randomly assigned to an experimental 
group that receives the intervention or a control group that 
receives an alternative treatment or possibly no treatment. The 
effectiveness of the intervention is then determined by compar-
ing the outcomes between groups. RCTs are highly regarded 
because compared with other types of studies (e.g., case studies), 
they ensure that the groups are probabilistically identical at the 
outset and that any difference in outcome are therefore caused by 
the intervention (assuming that the probability of the difference 
occurring by chance is sufficiently low).

Unfortunately, not all RCTs are of the same quality (e.g., 
Higgins et al., 2011). The conclusions of an RCT can be dis-
torted or of limited use if, for example, the sample is too small or 
not representative, the allocation of the participants is compro-
mised, the outcomes are selectively reported, attrition is ignored, 
or the outcome measure provides an unfair advantage to the 
intervention group (e.g., by including material that is taught to 
the intervention group but not the control group).
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There are a growing number of large-scale educational randomized controlled trials (RCTs). Considering their expense, it 
is important to reflect on the effectiveness of this approach. We assessed the magnitude and precision of effects found in 
those large-scale RCTs commissioned by the UK-based Education Endowment Foundation and the U.S.-based National 
Center for Educational Evaluation and Regional Assistance, which evaluated interventions aimed at improving academic 
achievement in K–12 (141 RCTs; 1,222,024 students). The mean effect size was 0.06 standard deviations. These sat within 
relatively large confidence intervals (mean width = 0.30 SDs), which meant that the results were often uninformative (the 
median Bayes factor was 0.56). We argue that our field needs, as a priority, to understand why educational RCTs often find 
small and uninformative effects.
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It is important to communicate the findings of education 
research to teachers. One approach is that adopted by the 
Education Endowment Foundation (EEF) in the United 

Kingdom and Institute of Education Sciences in the United 
States. These bodies have commissioned hundreds of random-
ized control trials (RCTs) and systematic reviews on the most 
effective teaching practices, which have then been summarized 
on accessible platforms—the Teaching and Learning Toolkit 
and What Works Clearinghouse, respectively. Such initiatives 
have proved very popular: Up to two thirds of schools in England 
report consulting the Teaching and Learning Toolkit to inform 
their practice (EEF, 2017), and the What Works Clearinghouse 
website attracts around 35,000 new users every month (Institute 
of Education Sciences, personal communication, June 1, 2020). 
Not surprisingly, similar initiatives have been appearing around 
the world, such as Evidence for Learning (Australia) and 
SUMMA (Latin America and the Caribbean). Despite these 
efforts to improve the availability of evidence in education, little 
research has examined how to present education research find-
ings in ways that maximize the ability of teachers to make 
informed decisions. This omission is surprising given the large 
number of teachers who engage with education research (e.g., 
Barton & Tindle, 2019), given that substantial efforts have been 
made to increase teacher’s use of research in their practice (e.g., 
Farley-Ripple et al., 2018; Goldacre, 2013), and given that many 
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Cohen’s d)—are often translated into more intuitive metrics before being communicated to teachers. However, there is no 
consensus about the most suitable metric, and no study has systematically examined how teachers respond to the different 
options. We conducted two preregistered studies addressing this issue. We found that teachers have strong preferences 
concerning effect size metrics in terms of informativeness, understandability, and helpfulness. These preferences challenge 
current research reporting recommendations. Most importantly, we found that different metrics induce different perceptions 
of an intervention’s effectiveness—a situation that could cause teachers to have unrealistic expectations about what a given 
intervention may achieve. Implications for how educational effects should be communicated are discussed.
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initiatives that summarize the impact of educational interven-
tions consider teachers to be one of their target audience (e.g., 
EEF, 2018; Evidence for Learning, n.d.; SUMMA, n.d.).

Translation of Effect Sizes in Education
In education research, an intervention’s impact is typically 
reported in units of standard deviations (e.g., Cohen’s d; see 
Kraft, 2020, for an overview of effect sizes of educational inter-
ventions in relation to their cost and scalability). Because this 
measure is hard to interpret, it is generally translated into a more 
relatable metric before being reported to practitioners. Many 
alternative metrics have been proposed (e.g., Lipsey et al., 2012), 
but to date, there is no consensus about the metric best suited for 
communication with practitioners. For example, the Teaching 
and Learning Toolkit, Evidence for Learning, and SUMMA 
translate effects into additional student months of progress, 
while the What Works Clearinghouse reports effects as percen-
tile gains (referred to as the improvement index).

Researchers have argued that some metrics are better than 
others. In their effect size interpretation guidelines, Valentine 
and Cooper (2003) recommended reporting raw mean 
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ABSTRACT
What do mathematicians mean when they use terms such as ‘deep’, ‘elegant’, and

‘beautiful’? By applying empiricalmethods developed by social psychologists, we demon-
strate that mathematicians’ appraisals of proofs vary on four dimensions: aesthetics,
intricacy, utility, and precision. We pay particular attention to mathematical beauty
and show that, contrary to the classical view, beauty and simplicity are almost entirely
unrelated in mathematics.

1. INTRODUCTION
Mathematical conversations are full of value judgements.Mathematicians talk of ‘beau-
tiful’, ‘deep’, ‘insightful’, and ‘interesting’ proofs, and award each other prizes on the
basis of these assessments. Validity or applicability are almost never the decisive criteria
for such awards. Instead the citations formathematical prizes are full of aesthetic judge-
ments: nine of the eleven Abel Prize citations since its foundation have characterised
the prizewinner or their work as ‘deep’, and the work of the remaining two was lauded
for its beauty and ingenuity [Holden and Piene, 2009; 2013]. Furthermore, many of
the most eminent researchers have suggested that it is these value judgements which
drive their research agendas. Hermann Weyl even claimed to prioritise beauty over
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People in pain make poorer decisions
Nina Attridgea,*, Jayne Pickeringa, Matthew Inglisa, Edmund Keoghb, Christopher Ecclestonb,c

Abstract
Chronic pain affects 1 in 5 people and has been shown to disrupt attention. Here, we investigated whether pain disrupts everyday
decision making. In study 1, 1322 participants completed 2 tasks online: a shopping-decisions task and a measure of decision
outcomes over the previous 10 years. Participants who were in pain during the study made more errors on the shopping task than
those who were pain-free. Participants with a recurrent pain condition reported more negative outcomes from their past decisions
than those without recurrent pain. In study 2, 44 healthy participants completed the shopping-decisions task with and without
experimentally induced pain. Participants made more errors while in pain than while pain-free. We suggest that the disruptive effect
of pain on attending translates into poorer decisions in more complex and ecologically valid contexts, that the effect is causal, and
that the consequences are not only attentional but also financial.

Keywords: Pain, Cognitive disruption, Decision making, Finances, Numeracy

1. Introduction

The disruptive effect of pain on attending has been demonstrated
with experimentally induced pain,30,40 chronic pain,9,15 and
transient pain such as headache.4,24,31 This field has pre-
dominantly focused on simple cognitive processes (although
sometimes using complex tasks combining multiple executive
functions25). Few studies have examined the effects of pain on
higher-level cognition. One which did found that clinical pain was
associated with less abstract thinking,20 whereas another found
no evidence that experimentally induced pain affected abstract
thinking.2 Here, we focus on the potential impact of pain on
higher-level real-world cognitive tasks requiring attention, namely
numerical reasoning and decision making, which have serious
consequences if one gets them wrong.

Reasoning and decision making are required in many areas of
life and are influenced by various cognitive and emotional factors.
Here, we focus on numeracy as a domain that is important in
many areas of life, including budgeting, choosing a mortgage,
and choosing insurance plans. Despite its importance, numeracy
in adults is poor. In the quantitative domain of the USA’s 2003
National Assessment of Adult Literacy, 55% of adults performed
at a basic or below basic level (at best being able to locate easily
identifiable quantitative information and solve one-step arithmetic
problems when the operation was specified or easily inferred).26

These findings were echoed in a 2016 UK Money Advice Service
study29 into the public’s ability to choose the best supermarket

deals for 4 products. Although 74%of participants chose the best
deal for at least one product, only 2% chose optimally for all 4.

Attention is important for learning and performing numerical
operations in both children and adults.13,36 Attention is also
important in decision making, where we need to consider various
options, estimate their likely outcomes, and then hold these in
mind while choosing among them. Given that pain impairs
attention, it may also influence numerical decision making.
Indeed, there is some initial evidence that this is the case. Placing
a hand into ice-cold water changed participants’ risk-taking on
a financial decision-making task.35

We investigated the effect of pain on everyday decision
making. In study 1, a large general population sample recruited
online reported whether they were currently in pain and whether
they had any recurrent pain conditions. They completed 2
tasks: the shopping-decision task used by the Money Advice
Service29 and the Decision Outcomes Inventory (DOI10), which
measures real-world outcomes of everyday decisions made
over the previous 10 years. We hypothesized that participants
who were in pain would find the best shopping deal on fewer
items than participants who were pain-free. If the effect of pain
on attention does translate into poorer decision making, the
outcomes of these poor decisions may accumulate in people
with chronic pain. We therefore hypothesized that participants
with pain that had lasted for 3 months or longer would report
more negative decision outcomes on the DOI than other
participants. In study 2, we took an experimental approach to
determine a causal relationship: participants completed an
extended shopping-decisions task with their hand in warm or
painfully cold water.

2. Study 1 method

2.1. Design and procedure

Participants (N 5 1322) took part online and were recruited via
Amazon’s Mechanical Turk (N5 658) and Prolific.ac (N5 664).
Research has shown data collected online for psychology
studies are reliable11,33 and that samples tend to be more
diverse than traditional university-based samples.27 The large
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Abstract
Mathematical explanations are poorly understood. Although mathematicians seem to
regularly suggest that some proofs are explanatory whereas others are not, none of
the philosophical accounts of what such claims mean has become widely accepted. In
this paper we explore Wilkenfeld’s (Synthese 191:3367–3391, 2014) suggestion that
explanations are those sorts of things that (in the right circumstances, and in the right
manner) generate understanding. By considering a basic model of human cognitive
architecture, we suggest that existing accounts of mathematical explanation are all
derivable consequences of Wilkenfeld’s ‘functional explanation’ proposal. We there-
fore argue that the explanatory criteria offered by earlier accounts can all be thought of
as features thatmake it more likely that amathematical proofwill generate understand-
ing. On the functional account, features such as characterising properties, unification,
and salience correlate with explanatoriness, but they do not define explanatoriness.

Keywords Explanation · Mathematics · Mathematical practice · Understanding

What are mathematical explanations? This question has generated substantial interest
among philosophers. A number of competing accounts of mathematical explanation
have been proposed (e.g., Kitcher 1981; Lange 2014; Steiner 1978), but all have well-
established limitations. Our primary goal in this paper is to explore the consequences
for mathematics of Wilkenfeld’s (2014) notion of functional explanation. Roughly
speaking, Wilkenfeld suggested that explanations are simply those things that, in
an appropriate manner and at an appropriate time, generate understanding. We will
argue that various philosophical accounts of mathematical explanation—including
those offered by Steiner (1978), Kitcher (1981), and Lange (2014)—are all deriv-
able consequences of a combination of Wilkenfeld’s functional account and a modern
understanding of human cognitive architecture. Consequently, we argue that Wilken-
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Abstract
Offering explanations is a central part of teaching mathematics, and understanding those 
explanations is a vital activity for learners. Given this, it is natural to ask what makes a 
good mathematical explanation. This question has received surprisingly little attention in 
the mathematics education literature, perhaps because the field has no agreed method by 
which explanation quality can be reliably assessed. In this paper, we explore this issue by 
asking whether mathematicians and undergraduates agree with each other about explana-
tion quality. A corpus of 10 explanations produced by 10 mathematicians was used. Using 
a comparative judgement method, we analysed 320 paired comparisons from 16 mathema-
ticians and 320 from 32 undergraduate students. We found that both mathematicians and 
undergraduates were able to reliably assess the quality of a set of mathematical explana-
tions. Furthermore, the assessments were largely consistent across the two groups. Implica-
tions for theories of mathematical explanation are discussed. We conclude by arguing that 
comparative judgement is a promising technique for exploring explanation quality.

Keywords Mathematical explanation · Explanation quality · Mathematical practices · 
Undergraduate mathematics · Comparative judgement
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Abstract

Stereotype threat has been proposed as one cause of gender differences in post-compul-

sory mathematics participation. Danaher and Crandall argued, based on a study conducted

by Stricker and Ward, that enquiring about a student’s gender after they had finished a test,

rather than before, would reduce stereotype threat and therefore increase the attainment of

women students. Making such a change, they argued, could lead to nearly 5000 more

women receiving AP Calculus AB credit per year. We conducted a preregistered conceptual

replication of Stricker and Ward’s study in the context of the UK Mathematics Trust’s Junior

Mathematical Challenge, finding no evidence of this stereotype threat effect. We conclude

that the ‘silver bullet’ intervention of relocating demographic questions on test answer

sheets is unlikely to provide an effective solution to systemic gender inequalities in mathe-

matics education.

Introduction

Mathematics education researchers have long been concerned that mathematics is experienced
differently by men and women [1]. This concern is, in part, fueled by gender differences in
post-compulsory participation rates in mathematical study and STEM careers [2].

One mechanism which some believe contributes to these observed gender differences in
participation is stereotype threat. This account suggests that members of negatively stereotyped
groups underperform when that stereotype is salient, perhaps because stereotype-related
thoughts place an extra burden on stereotyped individuals’ cognitive resources [3]. For exam-
ple, Steele and Aronson [4] found that black participants underperformed on laboratory tests
of verbal ability compared to white participants, but only when reminded of negative stereo-
types concerning race and intelligence. Similarly, Spencer, Steele and Quinn [5] found that
women performed worse on a laboratory mathematics test than men, but only when they were
told that the test usually revealed gender differences in achievement. Subsequently many simi-
lar lab-based studies have been conducted: a meta-analysis of 47 such studies showed that
women, on average, underperform on laboratory mathematics tests by 0.22 standard devia-
tions when under stereotype threat conditions [6].
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Large-scale randomized controlled trials (RCTs) are now 
regularly used to evaluate educational interventions. For 
example, the U.S.-based National Center for Educational 

Evaluation and Regional Assistance (NCEE) started funding 
large-scale RCTs in 2002, and the UK-based Education 
Endowment Foundation (EEF) has funded more than 160 since 
2012. This trend is not limited to these two countries: In recent 
years, funding organizations in the European Union (e.g., 
European Schoolnet), Japan (e.g., Nippon Foundation), 
Australia (e.g., Social Ventures), Switzerland (e.g., Jacob’s 
Foundation), Brazil (e.g., Lemann Foundation), and Bangladesh 
(e.g., BRAC) have also prioritized RCTs in education.

Evaluating the efficacy of educational programs before imple-
mentation is important to avoid wasting resources. In medicine, 
there are many instances where RCTs have shown that promising 
treatments were ineffective or harmful (Sibbald & Roland, 1998). 
However, conducting large-scale RCTs is expensive. For example, 
the EEF spends around £500,000 per trial (EEF, 2015a). Given 
the growing number of large-scale RCTs in education and their 
expense, it is important to reflect on how informative this new 
research focus has been. To our knowledge, no study has system-
atically evaluated this recent trend. In this article, we use empiri-
cal data from two prominent educational funding bodies to 
evaluate the typical effects produced by large-scale educational 
RCTs. Our aim is to provide an empirical basis for discussions of 
the field’s efforts to build rigorous scientific evidence.

Randomized Control Trials

RCTs are widely regarded as the “gold standard” for measuring 
the efficacy of interventions (Pocock, 1983). In their simplest 
form, participants are randomly assigned to an experimental 
group that receives the intervention or a control group that 
receives an alternative treatment or possibly no treatment. The 
effectiveness of the intervention is then determined by compar-
ing the outcomes between groups. RCTs are highly regarded 
because compared with other types of studies (e.g., case studies), 
they ensure that the groups are probabilistically identical at the 
outset and that any difference in outcome are therefore caused by 
the intervention (assuming that the probability of the difference 
occurring by chance is sufficiently low).

Unfortunately, not all RCTs are of the same quality (e.g., 
Higgins et al., 2011). The conclusions of an RCT can be dis-
torted or of limited use if, for example, the sample is too small or 
not representative, the allocation of the participants is compro-
mised, the outcomes are selectively reported, attrition is ignored, 
or the outcome measure provides an unfair advantage to the 
intervention group (e.g., by including material that is taught to 
the intervention group but not the control group).
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It is important to communicate the findings of education 
research to teachers. One approach is that adopted by the 
Education Endowment Foundation (EEF) in the United 

Kingdom and Institute of Education Sciences in the United 
States. These bodies have commissioned hundreds of random-
ized control trials (RCTs) and systematic reviews on the most 
effective teaching practices, which have then been summarized 
on accessible platforms—the Teaching and Learning Toolkit 
and What Works Clearinghouse, respectively. Such initiatives 
have proved very popular: Up to two thirds of schools in England 
report consulting the Teaching and Learning Toolkit to inform 
their practice (EEF, 2017), and the What Works Clearinghouse 
website attracts around 35,000 new users every month (Institute 
of Education Sciences, personal communication, June 1, 2020). 
Not surprisingly, similar initiatives have been appearing around 
the world, such as Evidence for Learning (Australia) and 
SUMMA (Latin America and the Caribbean). Despite these 
efforts to improve the availability of evidence in education, little 
research has examined how to present education research find-
ings in ways that maximize the ability of teachers to make 
informed decisions. This omission is surprising given the large 
number of teachers who engage with education research (e.g., 
Barton & Tindle, 2019), given that substantial efforts have been 
made to increase teacher’s use of research in their practice (e.g., 
Farley-Ripple et al., 2018; Goldacre, 2013), and given that many 
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options. We conducted two preregistered studies addressing this issue. We found that teachers have strong preferences 
concerning effect size metrics in terms of informativeness, understandability, and helpfulness. These preferences challenge 
current research reporting recommendations. Most importantly, we found that different metrics induce different perceptions 
of an intervention’s effectiveness—a situation that could cause teachers to have unrealistic expectations about what a given 
intervention may achieve. Implications for how educational effects should be communicated are discussed.

Keywords: communication; decision making; effect sizes; experimental design; teacher knowledge; teachers
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initiatives that summarize the impact of educational interven-
tions consider teachers to be one of their target audience (e.g., 
EEF, 2018; Evidence for Learning, n.d.; SUMMA, n.d.).

Translation of Effect Sizes in Education
In education research, an intervention’s impact is typically 
reported in units of standard deviations (e.g., Cohen’s d; see 
Kraft, 2020, for an overview of effect sizes of educational inter-
ventions in relation to their cost and scalability). Because this 
measure is hard to interpret, it is generally translated into a more 
relatable metric before being reported to practitioners. Many 
alternative metrics have been proposed (e.g., Lipsey et al., 2012), 
but to date, there is no consensus about the metric best suited for 
communication with practitioners. For example, the Teaching 
and Learning Toolkit, Evidence for Learning, and SUMMA 
translate effects into additional student months of progress, 
while the What Works Clearinghouse reports effects as percen-
tile gains (referred to as the improvement index).

Researchers have argued that some metrics are better than 
others. In their effect size interpretation guidelines, Valentine 
and Cooper (2003) recommended reporting raw mean 
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Investigating and 
Improving Undergraduate 
Proof Comprehension
Lara Alcock, Mark Hodds, Somali Roy, and Matthew Inglis

Undergraduate mathematics students see a lot of 
written proofs. But how much do they learn from 
them? Perhaps not as much as we would like; 
every professor knows that students struggle to 
make sense of the proofs presented in lectures 
and textbooks. Of course, written proofs are only 
one resource for learning; students also attend 
lectures and work independently or with support 
on problems. But because mathematics majors 
are expected to learn much of their mathemat-
ics by studying proofs, it is important that we 
understand how to support them in reading and 
understanding mathematical arguments. 

This observation was the starting point for 
the research reported in this article. Our work 
uses psychological research methods to generate 
and analyze empirical evidence on mathematical 
thinking, in this case via experimental studies of 
teaching interventions and quantitative analyses 
of eye-movement data. What follows is a chrono-
logical account of three stages in our attempts to 
better understand students’ mathematical reading 
processes and to support students in learning to 
read effectively. 

In the first stage, we designed resources we 
called e-Proofs to support students in under-
standing specific written proofs. These e-Proofs 
conformed to typical guidelines for multimedia 
learning resources, and students experienced 
them as useful. But a more rigorous test of their 
efficacy revealed that students who studied an e-
Proof did not learn more than students who had 
simply studied a printed proof and in fact retained 
their knowledge less well. This led us to suspect 
that e-Proofs made learning feel easier, but as a 
consequence resulted in shallower engagement 
and therefore poorer learning. 

At the second stage we sought insight into pos-
sible underlying reasons for this effect by using 
eye-movement data to study the mechanisms of 
mathematical reading. We asked undergraduate 
students and mathematicians to read purported 
proofs and found that experts paid more atten-
tion to the words and made significantly more 
back-and-forth eye movements of a type consistent 
with attempts to infer possible justifications for 
mathematical claims. This result is in line with the 
idea that mathematical experts make active efforts 
to identify logical relationships within a proof and 
that effective guidance might therefore be needed 
to teach students to do the same thing. 
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